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Abstract--The problem of two-dimensional transient conjugate free convection due to a vertical plate of 
finite extent adjacent to a semi-infinite porous medium is investigated both analytically and numerically. 
In view of the number of nondimensional parameters present in the formulation, namely the Rayleigh 
number, Ra. the thermal conductivity and diffusivity ratios, k and ct, respectively, between the plate and 
the porous raedium, the heat capacity ratio, ~, for the porous medium and the plate aspect ratio, 2, a one- 
dimensional formulation is used to identify two parameter regimes, Ra >> 1 and F ( = 7ct) << Ra, and F >> 1 
and Ra << 1-, for which analytical solutions may be found; these are subsequently seen to compare 
favourably with computed solutions, also presented here, to the time-dependent governing heat and 
momentum equations. For the first of the parameter regimes mentioned above, the transient process is 

seen to develop towards the steady-state solution obtained by the same authors elsewhere. 

1. INTRODUCTION 

The problem of natural  convection due to a heated 
vertical plate of finite extent placed adjacent to a semi- 
infinite porous medium provides one of the most basic 
scenarios for free convection, and is thus of con- 
siderable practical and theoretical interest. In recent 
years, in order to take account of physical reality, 
there has been a t,zndency to move away from con- 
sidering idealised problems in which the plate is con- 
sidered infinitesimally thin [1, 2], but  instead to take 
account of  the so-called conjugate effects which arise 
due to the finite thickness of the plate. In particular, 
papers by Vynnycky and Kimura  [3, 4] have eluci- 
dated the steady-state problem for both the cases when 
the semi-infinite medium is either porous or fluid. 
Common to both works was the derivation of an 
approximate formula which predicts the average tem- 
perature and average Nusselt number  at the conjugate 
boundary  for high values of the Rayleigh number  and 
which may be applied for a wide range of values of 
the thermal conductivity ratio, k, and plate aspect 
ratio, 4; furthermore, similar results have been 
obtained for the ca:~es where conjugate free convection 
is due to a heated cylinder [5, 6] and a heated sphere 
[7]. 

As regards transient natural  convection, some work 
has been carried ouLt for the situation where the heated 
plate is thin:  for example, Johnson and Cheng [8] 
considered all the possible similarity solutions that 
might arise in boundary-layer flow past such a plate, 
whilst Ingham and Brown [9] and Ingham et al. [10] 
investigated the effiects, respectively, of  suddenly heat- 
ing and cooling a vertical plate in a porous medium. 
However, to the best of the authors '  knowledge, there 

has been little investigation of time-dependent con- 
jugate effects, despite the fact that, in reality, transient 
convection might be expected to be a precursor to 
steady convection and that the heated plate is not  
infinitesimally thin;  it is to this, therefore, that this 
paper is addressed. In what follows, we make use of 
the work of Vynnycky and Kimura  [3] to demonstrate 
the flow development with time. In Section 2, we for- 
mulate mathematically the problem of flow due to a 
vertical plate, initially at ambient  temperature, one of 
whose sides is thereafter held fixed at a temperature 
greater than ambient. In Section 3, it is shown that 
the momentum and heat equations of Section 2 may 
be simplified, in certain cases, to obtain a problem 
which is much more tractable than the solution of the 
full equations ; in particular, we demonstrate how our 
derived time-dependent equations reduce to the time- 
independent limit elucidated by Vynnycky and 
Kimura  [3]. In Section 4, we present a full numerical 
solution to the governing equations, concentrating in 
particular on a comparison with the analytical results 
of  Section 3 and on demonstrating the importance of 
the Rayleigh number,  Ra, and F, the product of the 
ratio of heat capacity, y, of  the saturated porous 
medium to that of  the fluid and the ratio of the thermal 
diffusivities (~f/~s) of the two media in influencing the 
flow. Finally, in Section 5 we draw conclusions. 

2. MATHEMATICAL FORMULATION 

Consider unsteady free convective flow due to a 
rectangular plate occupying the region - a  ~< x <~ 0, 

- b/2 <~ y <<. b/2, adjacent to a semi-infinite fluid-satu- 
rated porous medium (x > 0, - oo ~< y ~< oo) (Fig. 
1) ; initially, the whole system is at a temperature, T~, 
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NOMENCLATURE 

a thickness of the conducting plate 
b length of the conducting plate 
g acceleration due to gravity 
kf effective thermal conductivity of the 

porous medium 
k~ thermal conductivity of the plate 
k thermal conductivity ratio, ks/kf 
K permeability of the porous medium 
NUb dimensionless average Nusselt number 

at the conjugate boundary 
Nuw dimensionless average Nusselt number 

at the heated wall 
Ra Rayleigh number for the porous 

medium, Kgfl(Tc- Too)b/o~fv 
t time variable 
T¢ constant temperature of heated side of 

plate 
T~ constant temperature of ambient fluid 
x horizontal coordinate 
y vertical coordinate 
u, v dimensionless velocity components 

along (x, y) axes 
X~ size of computational domain in x- 

direction 

Y~ size of computational domain in y- 
direction. 

Greek symbols 
af thermal diffusivity of the porous 

medium 
7s thermal diffusivity of the solid 

thermal diffusivity ratio, ~s/af 
fl coefficient of thermal expansion 
7 the ratio of heat capacity of saturated 

porous medium to that of fluid 
F dimensionless parameter, y~f/c~s 
6 boundary-layer thickness 
0~ dimensionless temperature in the solid 
0f dimensionless temperature in the 

porous medium 
fib dimensionless average conjugate 

boundary temperature 
A0 temperature increment 
2 aspect ratio, a/b 
v kinematic viscosity 

dimensionless streamfunction 
A~h streamline increment. 

Y 

x = - a  

Fig. 1. Sketch of geometry for natural convection. 

X 

but subsequently the left-hand side of the plate is 
instantaneously raised to, and held at, a uniform tem- 
perature Tc (>  T~). The sides of the plate, y = +_-b/2 

are insulated, whilst, for the porous medium, there is 
no heat flux and no normal outflow across x = 0, 
[Yl > b/2 ; in addition, for x = 0, lYl < b/2, we expect 
both continuity of temperature and heat flux. 
Assuming that the porous medium is isotropic and 
homogeneous and that the fluid is incompressible, 
we invoke the Boussinesq-Darcy approximation to 
obtain the equations of continuity : 

and momentum : 

Ou 

Ou c~v 
~x + ~ y  = 0, (1) 

~v gllK ~ Tf 
Oy ~x v Ox ' (2) 

the equation of energy in the fluid-porous medium : 

OTf Orf +vOTf = ['~2rf O2Tr" ~ 
Y ~ -  + u  ~-x ay ctf~2-x2 q-¢3y2 ] '  (3) 

and the equation of the heat transfer inside the solid 
plate : 

0Ts = a, V2 Ts, (4) 
at 

where (u, v) are the velocity components in the (x, y) 
directions, Tr and T, are the temperatures of  the fluid- 
saturated porous medium and the solid plate, respec- 
tively, and the physical constants g, fl, v, K, af, a, and ~, 
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(and later ks and k 0 are as given in the Nomenclature. 
Equations (1)-(4) are subject to the following boundary 
conditions : 

u = 0  on x = 0 ,  (5) 

Ts=Tf  kfOTf=ksOT~ox Ox on x = 0  lYl~<~, 

(6) 

0Tr b 
Ox 0 on x = 0  lYI>~ ,  (7) 

b 
Ts=T~ on x = - a  [YI~<~, (8) 

0T~ 
Oy 

b 
- - = 0  on y = - t - ~  - a ~ x ~ O ,  

Tf~T~ as x ~  y ~ + ~ ,  

v - + O  as x - - * ~ ,  

u-~O as y~_+ oo .  

Furthermore, we have the initial conditions: 

(9) 

(10) 

( l l )  

(12) 

b 
T~(x,y,O) = T+ for - - a ~ x ~ O  lYl < ~ ,  

(13) 

Tf(x,y,O)=T~, for x~>0 - - ~ < y < o o ,  

(14) 

u = v = 0  fbr x>~0, - o o < y < o o .  (15) 

By employing the following non-dimension- 
alisation, 

x y ,  Y t* cqt u* bu =Z 

v * =  b v 0 " -  T : -T+ Of*- T f -T+ 
~r rc-- T+ T~--T~' 

subsequently dropping the asterisks and then defining 
the dimensionless stream function by : 

00 00 
U=Ty 0x' 

V 2~ = - Ra ~ ,  

r 00r + ,~0 00r 00 00r 
Ot Oy Ox 0x 0y = VZ0r' 

0 t  = V20" 

we arrive at : 

= 0 o n  x = O, 

00f 
- - ~ 0  
0x 

on x =  0 
! 

lyl >~ ,  

subject to : 

_<! (21) 0~=1 on x = - - 2  lYI-~2, 

0 s = Of on x = 0 lYl ~< ½, (22) 

k 00s 00f 
O x = O x  on x = O  lyl~<½, (23) 

0 0 s  1 
0 y = 0  on Y = + 7  - - 2 ~ < x ~ 0 ,  (24) 

0 f ~ 0  0 0 ~ 0  as x ~ o o ,  (25) 
Ox 

0 f ~ 0  0 ~ 0  as y - ~ + m ,  (26) 
Oy 

Os(x,y,O)=O for - 2 ~ < x ~ < 0  [y[<½, (27) 

Of(x, y, O) -- O for x>~0 - ~ < y < o o ,  (28) 

O ( x , y , 0 ) = 0  for x~>0 - m < y < o %  (29) 

where Ra=Kpyfl(Tc-T+)b/~fv is the Rayleigh 
number, 2 = a/b denotes the aspect ratio of the con- 
ducting plate, k = ks/kf is the ratio of the thermal 
conductivities in the conducting solid and the porous 
medium, and F = 7~/~f is the product of the ratio of 
heat capacity, ~,, of the saturated porous medium to 
that of the fluid and the ratio of the thermal diffus- 
ivities of the porous medium and the solid. 

The physical quantities which are then of most 
interest are the dimensionless local Nusselt numbers 
at the conjugate boundary and the heated wall, given 
by: 

: __ ( 0 0 f ~  1 
UUb(y,t) \ 0xL=0  lYl ~< 7, 

_g00 4 
Nuw(y,t) = \OXjx= -~ lYl ~< 7, 

respectively, and the corresponding dimensionless 
average Nusselt numbers, given by : 

NUb(t) = J-1/2 Nubdy N--~(t) = Nuwdy. 

3. APPROXIMATE ANALYTICAL SOLUTION 

Given the large number of parameters present in 
the problem, it is worth identifying parameter ranges 

(16) for which simplifications arise, before resorting to a 
full numerical solution. In particular, we highlight two 
such scenarios, in both of which a boundary layer 

(17) forms on the porous side of the conjugate boundary; 
first, we formulate as generally as possible, and then 
consider the cases in turn. Assuming the boundary 

(18) layer to be of thickness O([x]) and the stream function 
of magnitude O([~,]), with y ~ O(1), then, under the 
boundary-layer assumption, (16) and (17) reduce, on 

(19) setting : 

x = [ x ] X  ,/, = [ 0 I V ,  
(20) 

to: 
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02~ Ra[x] OOf 

8X 2 - [¢1 8X'  (30) 

2 80f 2 ['l~l'~l DOe 8~ 80f'~ 820r, (31) 
fix] ~ -  + Ra[x] ~Ty 8X OX fifty] = 8X 2 " 

thence, we will require [~] = Ra[x] from equation 
(30), with [~] and [x] to be determined from equation 
(31). 

3.1. Ra >> 1 and F << Ra 
In this parameter  range, convection balances 

diffusion in the boundary  layer in which case 
[x] = Ra -~/2 and [~] = Ra 1/2, so that  equations (30) 
and (31) reduce to:  

O2W 80f 

OX 2 8X'  

8W 80r OW OOf O~Of 
8y 8X OX Oy aX z' 

provided that  t >> F/Ra, which, since F << Ra, is effec- 
tively for all t > 0. Thus, the temperature and velocity 
within the boundary  layer adjust instantaneously to 
condit ions in the conducting solid side of the con- 
jugate boundary,  and t ime-dependency in the porous 
medium arises only through the conjugate boundary  
temperature. I f  we proceed by considering the ver- 
tically averaged solid temperature,  0s, given by : 

I 
1/2 

f~ (x, t) = 0~ (x, y, t) dy, 
d-1/2 

and the vertically averaged conjugate boundary  tem- 
perature, 0b(t), where : 

f 
/2 

fb(t) = 0~(0,y, t) dy, 
1/2 

equation (18) reduces to:  

8fs 826s 
- ( 3 2 )  

& 0x 2 ' 

subject to : 

and : 

0s = 1 o n  x = - - 2 ,  ( 3 3 )  

f s= f ib ( t )  on x = 0 ,  (34) 

0.888 [Oh (t)] 3/2 Rai l  2 
on x = 0 .  (35) 

0x k 

In particular,  the last equation makes use of  the result 
that  : 

N~b(t) ~ 0.888[Ob(t)] 3/2 Ra '/2, 

obtained by Vynnycky and Kimura  [3], in conjunction 
with Cheng and Minkowycz [2] ; this constitutes the 
t ime-dependent generalization of  the result obtained 
in ref. [3], which is made permissible by the assump- 

tion that the porous medium boundary layer adjusts 
instantaneously to the solid plate temperature at  each 
value of t, with 0b(t) as the apriori unknown boundary 
temperature which must be solved for as par t  of the 
problem. By making the scalings x = 22, t = 22/, 
equations (32)-(35) may then, on dropping the tildes, 
be reduced to their simplest form : 

Oti s (~2f s 
- ( 3 6 )  

c~T c3X2' 

f s =  1 on X = - - I ,  (37) 

0fs 
-- 0"~s/2 on X = 0, (38) 

ÜX 

where a ( =  0.8882Ral/2/k) is analogous to the Biot 
number which often occurs in conduction studies [11]. 
This is a s traightforward diffusion equation for fs 
which may be solved for a > 0 using a Crank-Nicol -  
son technique with i teration to take account of  the 
non-linear boundary  condit ion (38); the part icular  
non-conjugate case when a = 0 corresponds physi- 
cally to a suddenly heated, and subsequently 
isothermal, plate with infinitesimal thickness, as con- 
sidered previously by Ingham and Brown [9]. A fur- 
ther point  worthy of  note is the existence of  a unique 
steady-state solution to these equations, given by : 

Os(X) = ( 0 b -  1)X+0b, (39) 

where : 

~G2 [((j~ _~_ ~ ) 1 / 3  AC (~ _[_ ~ 2  - 1/3__ 112 1) 

= 2 
if ~ > - -  

1 2 
[2 cos (½ c o s - '  (q~))- 1] 2 if a < ~ ,  

9ff 2 , / 2 7  

(4o) 

where q~ = (27a2/2)-  1, as derived by Vynnycky and 
Kimura [3] ; moreover, this indicates that, in the fimit as 
t --* or, the present time-dependent formulation is indeed 
consistent with the time-independent solution of the 
earlier paper. 

3.2. F >> 1 and Ra << F 
In this case, the transient term balances the diffusion 

term in equation (31), so it is appropriate to take 
[x] = F ~/2, [~9] = R a F  -~/2, provided that t<< F/Ra, 
corresponding physically to the case where conduction 
dominates convection in the early stages of  the flow. 
On introducing the vertically averaged porous medium 
temperature, ~,  given by:  

f 
l/2 

~(x, t) = Of(x, y, t) dy, 
J-- 1/2 

equations (30) and (31) reduce to:  



Transient conjugate free convection 223 

02'½ , &~ 
& X  2 - -  & X '  

Ot & X  2 ' 

(41) 

(42) 

&t - &x 2 ' 

with the boundary conditions 
boundary layer now being : 

O s = ~  • o n  

k &ff~ J'2 &Of 
~-x-x = F ' ~ on 

(43) 

pertinent to the 

X = O ,  

X = O ,  

&0 
Of---~O, ~ X - ' + O  a s  X - + o o .  

With reference to C arslaw and Jaeger [12], we obtain : 

p" erfc ( 2 n + l ) 2 + x  

-- # erfc [(2n + 1)2-- x_l'~, 

L 2 ~  JJ 

£  nerfc[(2.+l)2+Xq, 
Fl/2 +k .=o L 2~/~ J 

(44) 

(45) 

and 

2k ~. . f .  ~ F(2n+l)2+x-I  
W(X,t) FI/2 + k  ,=0 - - -  ~,~,.,er,c L ~ J 

/ l \ m f  / (2n +_ 1_)22z.) 
+2t7 ) t e x p t  -- 4t ] 

[(2.+ j)2+x12,l ~ 
--exp : ~  ) j  

- - (2n+  1)2{erf [ (2n+ 1)2+ Xq 

[(2,+ 
- erf L~-~---JJ) (46) 

where p = (FIl~-k)t(Fl/2+k), and erf (X) denotes 
the error function given by : 

eft(X) =-- ~ exp ( - s2 )ds ,  

and erfc (X) = 1 - e f t ( X ) .  Thence, we obtain the con- 
jugate boundary temperature as : 

2k ~ , ~ 1-(2n+l)2-] 
#b(t) = - -  ~ ff e r l c / ~ / ,  (47) 

F m + k  ,=0 L 2x/ t  J 

with the Nusselt number at the conjugate boundary 
a s  : 

&~ 2k £ # ' e x p (  (2n+1)222~ 

&x = ( r ' / : + k ) ~ / ~ . : o  ~i ) '  
(48) 

and the heat flux at the fixed temperature boundary 
a s  ; 

k&ff~= 2k £ p " e x p ( - ~ ) .  (49) 
&x (F1/2 +k)x/~ .=0 

Of note here is the fact that, although ~, depends on 
Ra, Or does not, as might be expected since heat flow 
in the early stages is dominated by conduction rather 
than convection. 

4. NUMERICAL SOLUTION 

The partial differential equations (16)-(18) were 
finite-differenced using a control volume approach 
and non-uniform grid network as described by Pat- 
ankar [13]. The details are essentially the same as 
those described in Vynnycky and Kimura [3], except 
for the inclusion of fully-implicit stepping for the time 
dependency in the problem; this amendment is rela- 
tively straightforward, and we therefore refer to the 
earlier paper for a complete validation of the method. 
In all cases, integration was carried out for unit aspect 
ratio, 2, until t = 10 using a time interval of 0.01 ; as 
might have been expected from equation (18), for 
F ~< 10, the integration time used proved sufficient to 
produce a steady state. We mention in passing that 
grid refinement was necessary in both x- and y-direc- 
tions in the vicinity of the conjugate boundary:  par- 
allel to the plate in order to resolve the boundary 
layer that forms for Ra >> 1, as well to take account 
accurately of the conjugate boundary condition, and 
along the plate, particularly in the vicinity of the lead- 

1 ing edge at y = - 7  in order to take account of the 
(y+½)-1/2 singularity in &Of/&x that arises there for 
Ra >> 1. In addition, as was justified in ref. [3], the 
extent of the computational domain in the x- and y- 
directions, X~ and Y~, respectively, was taken to be 
g ~ =  Y~ = 5 .  

Our computations focused on those cases where a 
direct comparison with the simpler solutions of Sec- 
tion 3 was possible. In order to facilitate comparison, 
we use the layout of the previous section to analyse 
the results in two stages, depending on whether 
Ra >> 1 and F << Ra, or F >> 1 and Ra << F. 

4.1. Ra >> 1 and F << Ra 
Figures 2 and 3 represent the streamline and iso- 

therm development, respectively, for flow in the case 
when a = 25 and Ra = 500 ; in both cases, the upper 
plots, labelled (a), represent the time evolution for the 
case when F = 0, and the lower ones, labelled (b), 
when F = 10  3. From the (a) plots, it is clear that a 
steady state has already been established as early as 
t = 2.5. The (b) plots, on the other hand, exhibit grad- 
ual development towards a steady state, which is still 
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cb, 

t=2 .5  = 5.0 

f 

= I0.0 

Fig. 2. Streamlines for a = 25, Ra = 500 at t = 2.5, 5.0 and 10.0 : (a) F = 0 (A~O = 2.0) ; (b) F = 103 
(A~ = 0.3). 

I 

(b) 

= 2 . 5  = 5.0 t = 10.0 

Fig. 3. Isotherms for a = 25, Ra = 500 at t = 2.5, 5.0 and 10.0 (A0 = 0.1) : (a) F = 0 ; (b) F = 1 0  3. 

a long way off even at  t = 10 ; by this stage, mos t  of  
the tempera ture  d rop  occurs across the solid plate, and  
the porous  med ium has  not  been warmed  appreciably 
much  above  its initial temperature.  Fur the rmore ,  Fig. 
2(b) il lustrates how the fluid flow is init iated once 
heat ing begins, namely by the es tabl i shment  of  a recir- 
culat ing region which gradually expands and  breaks  
to produce the s treamline pa t te rn  of  Fig. 2(a), wherein  

buoyancy  forces t r anspor t  fluid upwards  once the 
porous  medium has  been sufficiently warmed.  

A direct compar i son  with the analytical  results of  
Section 3 is provided in Figs. 4 -6  which illustrate, 
respectively, the average conjugate  b o u n d a r y  tem- 
perature,  the average conjugate  bounda ry  Nussel t  
n u m b e r  and  the average hea ted  wall Nussel t  n u m b e r  
for a = 0.25, 2 and  25, F = 0, 10 and  103 when  
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Ra = 500 ; F = l03 does not, of  course, lie in the range 
of validity of the analytical solution (given by the 
dashed line), and hence agreement is expected to be 
poor, but it is included here in order to enable us to 
illustrate the heat transfer characteristics for a wide 
range of F when Ra >> 1. In general, the agreement 
with the analytical solution for F = 0 and 10 is good 
for the average conjugate boundary temperature for 
all values of ~r; as for the wall Nusselt numbers, this 
tends to be quite poor for cr = 0.25 [Figs. 5(a) and 
6(a)], but  improves with increasing cr : Figs. 5(c) and 
6(c) for cr = 25 indicate excellent agreement for all 
values of t. The interaction of cr and F, as shown for 
example by Fig. 4(a)-(c) is also intriguing. Although 
for lower values of F, ~ plays no role in determining 
how rapidly a steady state is reached, it is clear that, 
for F = 103, a is the influential factor in governing the 
evolution rate;  physically, this may be interpreted as 
the statement that a high value of or, corresponding to 
a low thermal conductivity ratio, inhibits the rate of 
heat transfer to the porous medium, thence slowing 
the rate of growth of the conjugate boundary tem- 
perature. One other feature which merits attention is 
the overturn in the average conjugate boundary Nus- 
selt number  in Fig. 5(a) and (b) : the combinat ion of 
high conductivity ratio and high porous medium heat 
capacity ratio implies a sudden, initially high heat 
transfer rate at the conjugate boundary,  before the 
Nusselt number  stabilises. 

4.2. F >> 1 and Ra << F 
Figures 7 and 8 represent the streamline and iso- 

therm development, respectively, for flow in the case 
when k = 10 and F = 103; in both cases, the upper 
plots, labelled (a), represent the time evolution for the 
case when Ra = 100, and the lower ones, labelled (b), 
when Ra -- 500. In both cases, the choice of such a 
high value for F inevitably means for the plots shown, 
as t = 2.5, 5.0 and 10.0, that a steady state has yet to 
develop ; the Rayleigh number  clearly has no effect on 
the rate of evolution of a steady state, but  merely 
determines the vigour of the stirring in the early stages 
of the flow, as well as governing the efficacy of heat 
transfer away from the conjugate boundary in a ver- 
tical plume adjacent to the wall. The physical 
interpretation of these plots is similar to that for Figs. 
2(b) and 3(b); in particular, comparison of these 
figures with Figs. 7(b) and 8(b), for which Ra = 500 
and F = 103 in both cases indicates the effect of an 
order of magnitude increase in k [since k 
( =  0.888Ra1/2/a) ~ 1 in the earlier figures[, namely 
more effective heat transfer to the porous medium, as 
evidenced by the higher temperatures at the conjugate 
boundary.  

Figures 9-11 serve to indicate the reliability of the 
analytical solution derived in Section 3.2 in com- 
parison with the numerical computations ; in all cases, 
the (a) plots represent results for F = 10 2, the (b) 
plots those for F = 103, and we note that, since from 
equations (47)-(49), 0b(t), Nuw(t) and NUb(t) are inde- 

pendent of Ra, only one curve pertaining to the ana- 
lytical solution is required in each case. As one would 
expect, the (a) plots give very poor agreement with 
the computed results, since the condit ion F >> Ra does 
not hold;  the (b) plots, on the other hand, provide 
very good agreement for the case Ra = 100, which 
inevitably deteriorates for Ra = 500. A final point 
worthy of mention here is that around t = 10, there 
appear to be the first signs of divergence of the ana- 
lytical solution from the numerical;  the error at this 
stage is still, percentage-wise, relatively small, and so 
this observation is not  out of step with the earlier 
remark that the analytical solution is valid provided 
t << O(F/Ra). 

5. CONCLUSIONS 

We have considered the problem of transient con- 
jugate free convection due to a heated vertical plate 
adjacent to a semi-infinite porous medium. By solving 
the heat and transfer equations numerically using 
finite differences, it has been possible to provide a 
detailed description of the effect of  non-dimensional  
parameters such as the Rayleigh number  (Ra), the 
ratio of the thermal conductivities (k), the plate aspect 
ratio (2), the ratio of heat capacity (7) of the saturated 
porous medium to that of the fluid and the ratio of the 
thermal diffusivities. In particular, the identification of 
the dimensionless parameter F ( =  7~s/~r) led us to 
consider two particular parameter ranges : Ra >> 1 and 
F << Ra, and F >> 1 and Ra << F. In both cases, ana- 
lytic simplifications result in an altogether simpler for- 
mulation, giving equations whose solution proves to 
be more easily tractable than that of the original for- 
mulat ion ; the case when Ra >> 1 and F << Ra cor- 
responds to vigorous convective flow which settles 
down within an O(1) time-scale to the steady state 
considered previously by Vynnycky and Kimura [3], 
whilst the case when F >> 1 and Ra << F corresponds 
to the situation where conduction dominates con- 
vection in the porous medium, as might occur in the 
early stages of flow development from zero initial 
conditions. In relation to this, it proves convenient to 
express our findings on a plot of  R a v s  F, as in Fig. 
12, indicating qualitatively the domains of validity of 
the analytical solutions, as well as the locations in 
(F, Ra) parameter space of our full numerical solu- 
tions. Agreement between the analytic and numerical 
solutions for the two regimes mentioned above proved 
to be good, leading us to believe that the analytical 
approach, although simple in nature, and hence com- 
putationally cheap, was successful in capturing the 
essential features of the heat transfer characteristics. 

Computations executed outside the range of val- 
idity of the analytical solution shed light on several 
other interesting points. It was noted that, for the 
Ra >> 1 regime, the rate of approach of the steady state 
for F >> 1 was markedly accelerated by an increase in 
the thermal conductivity ratio, k. Furthermore,  this 
also had the effect of producing an overturn in the 
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(a) 

Cb) 

r - ,  x 

t = 2 .5  t = 5 .0  t = I0.0 

Fig.  7. S t reaml ines  fo r  k = 10, F = 103 a t  t = 2.5, 5.0 a n d  10,0:  (a) Ra = 100 (A~k = 0 .5 ) ;  (b) Ra = 500 
(A@ = 3). 

t = 5 . 0  = I0.0 = 2. ,5  

Fig.  8. I s o t h e r m s  f o r  k = 10, F = 103 a t  t = 2.5,  5.0 a n d  10.0 (A0 = 0 .1 ) :  (a) Ra = 100;  (b) Ra = 500. 



230 M. VYNNYCKY and S. KIMURA 

0~ (t) 0.~ 

analytical  

/~a = 100 
/ 

/~a = 500 
/ /  0,(t) 

1.0 

0.5 

analytical 

0 , 0  I i 0 . 0  . . . . . .  I I 0.0 5 , 0  I 0 , 0  0,0 5 , 0  1 0 . 0  

t t 

(a) (b) 

Fig. 9. Average conjugate boundary temperature [0b(t)] VS time (t) with k = 10 (Ra = 100 and 500) for: 
(a) F = 102;(b) F = 103. 
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Fig. 10. Average conjugate boundary Nusselt number [Nub(t)] vs time (t) with k = 10 (Ra = 100 and 500) 
for: (a) F = 102; (b) F = 103. 

average conjugate boundary Nusselt number during 
the early stages of  the flow, in contrast to the mono-  
tonic progression to a steady state that occurred in 
both the numerical and analytical solutions for 
F ~ O(1) ; on the other hand, the average heated wall 
Nusselt number for this parameter range indicates a 
uniform monotonic  decrease to a steady state, at a 
rate much faster than that for the conjugate boundary.  
Although computat ions were executed for only one 
value of  the aspect ratio, 2 ( =  1), it may be plausible 
to suggest that the qualitative dependence of  heat 
transfer characteristics on 2 may be derived using the 
above and ref. [3]. 

A final remark concerns the actual number of  rel- 
evant parameters and variables in the problem ; from 

the foregoing, it is clear that in the general case the 
governing parameters are (F, Ra, k, 2), with (x,y,  t) as 
the independent variables. However,  previous studies 
for non-conjugate two-dimensional transient bound- 
ary-layer flow in a porous medium [9, 10] indicate 
the possibility of  reducing the number  of  independent 
variables from three to two 0/, z say) : for example, 
q = x/y  ~/2, z = t/y for the case when the heated plate 
is isothermal. For  the present problem, however, a 
reduction to two independent variables, in the manner 
of  refs. [9] and [10], seems possible only when a = 0, 
in which case the solution of  Ingham and Brown [9] 
for decay to a steady state when z >> 1 would cor- 
respond to the Ra >> 1, Ra >> F, t >> F/Ra regime con- 
sidered here in Section 3.1. On the other hand, it does 
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Fig. 11. Average heated wall Nusselt number [Nuw(t)] vs time (t) with k = 10 (Ra = 100 and 500) for: 

(a) F = 10:;(b) F = 103. 
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seem possible, in the limiting regimes identified in 
Section 3, to consider the problem wholly in terms of  
the three parameters  k / F  1/2, 2(Ra/F)  ~/2, Ra, with the 

time variable now taken to be t (Ra/F).  Consequently 
for F >> 1, these parameters  may be recovered 
explicitly by appropria te  manipulat ion of  the equa- 
tions in Section 3.2 ; for Ra >> l, the situation is even 
simpler since two of  the parameters  combine to give 
tr, so that  the problem depends only on Ra and a. 
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